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A PROBABILISTIC METHOD FOR FIELD SOLUTIONS IN 
TWO-PHASE FLOWS 

J. ZHANG AND M. C. ROCO* 
Department of bfechunxal Engineering, L7nwerutj 01 Kentuthy. Lexington. K Y  40506, U S A 

SUMMARY 

Solid-particle motion and related transport phenomena in two-phase flow are fluctuating processes in space 
and time. A deterministic method can describe only partially the intrinsic physics of these processes. In this 
paper, the fluctuations of the flow parameters are modelled by considering the spatial correlations, and 
a probabilistic computational method for two-phase flow is presented. The probabilistic governing equa- 
tions have been discretized in space using a finite volume method, and then solved by applying the Neumann 
expansion method. This last method is time efficient, and its convergencc can be guaranteed even for large 
fluctuations. A liquid-solid particle mixture flow in a circular pipe is taken as an example. Computational 
results illustrate the merit of the probabilistic approach for the prediction of two-phase flow phenomena. 

K F Y  WORDS Probabilistic numerical method Neumann expansion method Fluid flow Solid-liquid two-phase 
flow Stochastic process 

INTRODUCTION 

Solid-particle motion and transport processes in two-phase flow are random in space and time, 
sometimes with an organized structure. However, the usual numerical techniques for two-phase 
flow are deterministic,' - 4  which only partially can describe the complex flow mechanisms. 
A numerical simulation of particulate two-phase flow within a stochastic framework is the object 
of this study. 

It is well-known that turbulent flow parameters, particularly in two-phase flow, are character- 
ized by probability distribution functions which are spatially correlated. A probabilistic approach 
accounts at least partially for this intrinsic flow characteristic. The spatial correlations between 
fluctuations are particularly important in flows with large mixing lengths and organized struc- 
tures. The difference between the probabilistic and deterministic solutions is more significant if 
the governing equations are non-linear, and the standard deviations and spatial correlations of 
the fluctuations are larger. 

The uncertainty associated with the spatial variability of particle location, particle size 
and heterogeneity produces an uncertainty in the flow parameters such as concentration and 
mixture velocity. In the probabilistic approach discussed here, an input parameter is 
considered to be a random variable with an associated probability density function at each 
point in the flow domain. The spatial dependence between neighbouring values of the random 
variables are defined in terms of a stochastic process model that defines the spatial correlation 
throughout the system. Related investigations on digital generation of sample functions in 
multidimensional, multivariable stochastic fields have been carried out by Shinozuka and 
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D a ~ g u p t a , ~  Shinozuka and Deodatis,' Vanma~-cke,'-~ Smith and Freeze,'oi'l Bakr et al." and 

It is known that the direct Monte Carlo simulation is prohibitive in many applications, 
including ours, because oft  he required computer time. A frequent approximation to direct Monte 
Carlo simulation is the perturbation method.5. ' However, this method requires that the variabil- 
ity of the flow parameters to be small. In addition, the method suffers on its accuracy, convergence 
and computational efficiency in higher-order solutions. These drawbacks are crucial in two-phase 
flow simulations where, in most of the cases, the variability of fluctuation of the random flow 
parameter is relatively large and higher order-solutions are required. 

The Neumann expansion technique was adopted in the present work within the framework of 
Monte Carlo method. This technique allows for a large variability of fluctuations of the flow 
parameters. The convergence of the solution can be guaranteed. The Neumann expansion 
method has been tested in solid mechanics, for the structural response variability resulting from 
the spatial variability of material proper tie^.^.' Other probabilistic numerical methods to solve 
field problem has been investigated in soil and ground-water flow and seepage 
problems. ''3 

The deterministic finite volume method has been previously applied for two-phase flow in 
pipes,'.' and it will used in the present investigation as reference for comparison. The method is 
briefly described in Appendix 11. The probabilistic numerical approach can be applied also in 
conjunction with other deterministic numerical method, such as finite element method and finite 
differences method. The governing equations used here for the one-equation turbulence model of 
incompressible mixture flow were presented in References 4 and 14. Their application is illus- 
trated with the one-equation eddy-viscosity model because reference deterministic results were 
available from previous work. The eddy viscosity may be considered as the product of the local 
turbulence length scale and velocity fluctuation. Since the turbulence length scale was assumed 
deterministic in the present study, the origin of the eddy-viscosity fluctuations are the velocity 
fluctuations. 

The objective of this paper is to develop a probabilistic numerical algorithm with potential 
applications to single-fluid and two-phase flow simulations. With several simplifications, the 
computational algorithm is illustrated for a slurry-pipe flow. Preliminary results obtained with 
the probabilistic approach are compared with results from the deterministic approach. 

R~~~ a1.13 

MODELLING OF STOCHASTIC FIELDS 

The spatial variation of a flow quantity I, such as concentration, velocity or eddy viscosity, is 
assumed to be a homogeneous stochastic process 

- [=[+ Y, 

where 4 is the mean and Y is its fluctuation, with mean (expectation) of Y equal to zero 

E [  Y ]  = 0. 

Two methods can be used to model the stochastic process Y: (a) the correlation function model 
and (b) the autoregressive model. 

The correlation function model 

the correlation function R between two points 
The usual way of describing a stochastic process Y, which has a spatial dependence, is through 

R(Ar) = E [  Y(r)  - Y(r + Ar)], (3) 
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where, in a two-dimensional domain (x, zj, r = [x, 23’ is the position vector, and Ar = [Ax, AzIT is 
the separation vector between two points r and r-Ar. 

and 11- represent the integral scales of the process’ in the x and z directions, respectively. 
They describe how fast the correlation R decreases with A.x and Az, respectively. The correlation 
function between two different points, (x, z )  and ( x + A x ,  z+Az), can be expressed by 

Let 

i - [( sy + (31) R (A x, Az) = G E exp (4) 

where uY is the standard deviation of the stochastic field Y. For simplicity, in the present analysis, 
Y is assumed homogeneous in the (x, z )  domain. 

If the randomness of the spatial variation is isotropic, then yx = y= = q,  and the correlation 
function of the spatial variation will depend only on the distance Ar = (Ax2 + Az2)0 ’ between the 

Let us consider two areas A l  and A 2  in a two-dimensional flow domain, where Yis defined. The 
areas A , ,  A,, A,, A , ,  ( A , u A , ) ,  A , ,  ( A , u A 2 )  and Ao12 ( A O ~ A 1 u A 2 )  are marked in Figure 1. 
A useful expression for the correlation function R(A1, A2 j was proposed by Vanmarcke’ 

R(A1, A2j=g;  [At? 7 ( & - ~ & 7 ( ~ 0 1 ) - & 2  Y ( ~ 0 2 ) + ~ & ,  ; 4 4 0 1 2 ) 1 >  (6) 

where ; ) (A)  is the spatial two-dimensional variance function. As discussed by Vanmarcke, y ( A )  
can be replaced by the product of two one-dimensional variance functions 

?((A) = ;s(Ar, Al)  = ~ ~ ( A r ) * ; ~ ( A l ) ,  (7) 
where A1 is the circumferential space interval. Here, y(A1) [or g ( A r ) ]  is the one-dimensional 
variance function 

if A l < q ,  
A1 

y(A1) = 1 -- - 
311 

/ 

Figure 1. Finite areas used in Equation (6) 
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In a numerical method, such as finite volume method, the flow domain is divided into an 
appropriate number of finite volumes (i.e. areas in a two-dimensional domain), each of relatively 
small size. If there are n finite volumes, there will be n stochastic field values associate with these 
volumes. Let consider the fluctuating components Y, = Y(ri), (i = 1,2, . . . , n) of the homogeneous 
stochastic field which is assumed to model the flow property variation around its expected value. 
The functions Y,  are random with mean zero, but correlated to  each other. r, represents the 
centroid location of a volume i. The correlation between fluctuations can be specified in terms of 
the covariance matrix Cyy, whose ij component is 

(9) Ci, =cov [ xq] = E [  xq] = R(ArzJ), 

where Arij=rt-r,  is the separation vector between the centroid of volume i and j ,  and R is the 
correlation function which has been discussed in previous paragraphs [equation (3 ) ] .  

A stochastic field Y= [ K ,  G, ... , YnIT can be generated 

Y = L Z ,  (1 0) 
where Z = [ E ~ ,  E ~ ,  . . . , c,JT is a vector consisting of n independent Gaussian random variables with 
mean zero and unit standard deviation. The lower triangular matrix L is obtained by the 
Cholesky decomposition of the covariance matrix Cy *. Hence, 

E [ Z Z T ]  = I  and L LT = Cyy ( 1  1) 

where I is the identity matrix of appropriate dimensions. The superscript T denotes the transpose 
of the matrix. The vector Y generated by using equation (10) satisfies the original covariance 
matrix 

E [ Y Y T ] = E [ L Z ( L Z ) T ] = L  E [ Z Z T ]  LT=CrY. (12) 

Different vectors Y are easily obtained with the aid of equation (10) by generating different 
samples for the independent Gaussian random vector 2 after the Cholesky decomposition is 
performed. Therefore, this technique can be conveniently used in Monte Carlo simulation. 

The stochastic field Y can also be generated from Cyy by the spectral decomposition method. 
The spectral decomposition is especially useful when the Y's are highly correlated with each 
other. In this case, the Cholesky decomposition may become numerically difficult." The eigen- 
values and eigenvectors of covariance matrix Cyy are obtained by solving the following equation: 

CYY O Y  = AY d ) Y ,  (13) 

where Ay is a diagonal matrix consisting of the eigenvalues of Cyy along its diagonal, and 
& = [bl, d)2 ,  . . . , d)n]T is the model matrix whose column vector Oi is the ith normalized 
eigenvector corresponding to the ith eigenvalue. A random independent Gaussian variable vector 
Z =  [ E ~ ,  c2, ... , c,] with a zero mean and unit standard deviation can now be easily generated. 
Then the stochastic field can be obtained by the following expression: 

Y= 4 y  z. (14) 

The uutouegvessir~e model 

Consider a stochastic field in which there exist spatial structures. The spatial correlation of the 
field can be described by the covariances matrix Cyy which was discussed in the previous section. 
Let assume that the spatial structure of the stochastic field is represented by an autoregressive 
model.'o*'1.'6 The random values in the process are related through a simple linear equation 
expressing the dependence of the value at a point on the values at  surrounding points. The 
autoregressive model is designed to model spatial variations in a statistically homogeneous 
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random field in which the stochastic dependence is local. The spatial dependence is quite different 
from a time series in which the structure can extend only in one direction, with the dependence 
only onto previously realized values. In space, the dependence is multidirectional and may have 
no directional preference. Therefore, it is impossible to generate values of the stochastic field 
sequentially from a set of known boundary values as it is in a time series model. 

Let us consider a two-dimensional pipe cross-section, which is divided into n volumes 
[Figure 2(a)]. In the two-dimensional case, the first-order autoregressive model (nearest-point 
modcl) can bc written as 

y i j =  re( K -  1 , j  + yi+ 1 ,  j )  + x r ( y i ,  j -  I + F. j +  1 )  + ~ i ,  j ,  (1 5 4  
where 

x, is the random variable satisfying the autoregressive relation, 
Ei. j is the normal random variable uncorrelated with other E ; ,  and having a mean zero and 

unit standard deviation, 
ae is an autoregressive parameter expressing the degree of spatial dependence of yi, on its 

two neighbouring values in the 0 direction, K - l , j  and y i + l , j  (lael<l), 
x r  is a similar autoregressive parameter in the r direction, on its neighbouring values 

&,j - l  and K,j+ l  (18x,./<l). 

Figure 2( b) shows the notations used for yi, in the pipe flow domain. For the one-dimensional 
case, the autoregressive relation is 

T = a ( l , - 1 +  y i f , ) + E i ,  (16) 

where the definition of the variables is similar to equation (15a). 
In a statistically homogeneous medium, equation (1 5a) holds for every finite volume within the 

domain. If a, equals x r r  the medium has a statistically isotropic covariance structure. That is, the 
statistical dependence between neighbouring values is independent of the orientation of the 
vector separating those values. 

Equation (15a) is written for an interior finite volume. For the boundary volumes, equation 
(15a) is used in a modified form. At a boundary of symmetry in the ith direction, we assume that 
the stochastic process from (i- 1,  j) to ( i , j )  follows the same trend as that from (i, j )  to (i+ 1, j ) ,  i.e. 

Yi - 1, j = K, j -  ( 6 + 1 , j  - Y;, j ) .  

X, j = C Y a r c ( Y i .  j -  I + K ,  j +  I ) +  C y ~ i ,  j ,  

Equation (15) becomes 

(15b) 

Since stochastic process does not exist beyond the wall, the process should have no dependence 

(1 5 4  

where the subscript s denotes symmetry boundary, and Cy= l /( l  - 2 ~ ~ ~ ) .  

on any locations beyond the wall. Accordingly, equation (1 5a) becomes 

K ,  j = x O w ( K - l . j +  yi+ l . j ) + X r w (  K , j -  I ) + E i , j >  

where the subscript w denotes wall boundary. The equations (1 5a)-( 15e) form a system of IZ linear 
equations 

where 2 is a random number vector 
Y= w Y + Z ,  (17) 

and W is a spatial lag operator matrix. 
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a. 

Figure 2. Computational domain: (a) mesh generated for a circular-pipe cross-section, (b) detail, (c) schematic diagram 
for the Interpolation function 

The calculation algorithm is the following. First, one generates n random Gaussian numbers, 
R ~ , ~ ,  with a mean zero. Then, the system equation (17) is solved for the value of Yi,j, yielding an 
internally correlated sequence of random variables which satisfies the autoregressive relation. 
Because ci , j  has the mean equal to zero, so has Y. Any mean 7 can be added to Y to obtain 
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[ [equation (i)]. The process is normally distributed with a mean 4 and a standard deviation gY. 

As indicated earlier, the vector Z has a mean zero and a unit standard deviation 

E [ Z ]  = CZ = 0, 

cov [Z Z'] = E [Z ZT] = I .  
(19) 

(20) 

Equation (17) can be rewritten as 

Y-  W Y = Z ,  

or 

( I -  W ) Y = Z .  (22) 

Y=( I -  W)- l  z. (23) 

The vector Y can be obtained from (22) 

The matrix inversion ( I -  W)-' can be regarded as a filter operating on a random vector Z to 
yield an output vector Y with an internal correlation depending upon the parameters tlg and x , .  
At the beginning of the simulation, the matrix ( I  - W )  is to be inversed only once, the subsequent 
generation of the Y process can be easily done by simply multiplying the inversed matrix with 
a different Gaussian random vector Z. 

The mean of Y is 

E [ Y ] = E [ ( I -  I v - 1  Z ] = ( I -  L v - 1  E[Z], (24) 

because the components of Ware constants for a statistically homogeneous medium. By applying 
equation (19), we obtain 

E [ Y ]  =o. (25)  

The covariance of the Y process is 

COV[ Y ]  = E [ (  Y-E [ Y ] ) ( Y - E  [ Y ] ) T ] ,  

= E [ Y  YT],  ' 

= E [ ( ( I -  w)- Z} { ( I  - W ) -  1 Z}T],  

= ( ( I  - W ) T ( I  - W ) }  - 1 E [Z ZT]. 

S={(Z-  W ) T ( I -  w)]-1, 

cov[Y]=SI=S.  

By applying equation (20), with 

then 

The correlation function matrix of the Y process is 

1 1 

f J Y  f J Y  
R = 7 cov [ Y ]  => s, 

where 0: is the variance of the statistically homogeneous Y process. 
By specifying one finite volume for the origin of the correlation matrix, one can plot a series of 

one-dimensional correlation functions along vectors moving away from that volume. If the 
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process is isotropic, a. = a,, and all one-dimensional correlation functions will be equal. Gener- 
ally, the vector oriented in the direction of the larger autoregressive parameter will have the 
slowest decaying correlation between neighbouring values. The integral scale re  or can be 
calculated by integrating the one-dimensional correlation functions in the 0 or r direction, 
respectively. 

NUMERICAL ALGORITHM 

Several deterministic numerical methods, such as finite differences, finite element and finite 
volume methods, are well-represented in computational fluid dynamics in recent years. The 
deterministic finite volume method for two-phase flow has been used in References 4 and 7, and it 
is adopted in this study. The basic flow equations were presented in previous work.4316 Here, 
a probabilistic approach is introduced by using the Neumann expansion in the framework of 
Monte Carlo method. 

Probabilistic approach 

In a flowing mixture of solids and fluid, the velocity, concentration and phase configurations 
are randomly distributed in space and time. The probabilistic approach can be used to evaluate 
both the mean and fluctuating quantities. 

In a stochastic field, the coeficient matrix K of the system of governing equations is not unique. 
The matrix K can be divided into two parts: the mean part, and the fluctuation part due to the 
stochastic field. For complex problems such as two-phase flow computation, the direct Monte 
Carlo simulation is too expensive to be pursued at present time. A more efficient probabilistic 
approach is the Neumann expansion method, which is presented here. 

The system of differential equations describing the flow is transformed into an algebraic system 
of equations according to the adoptcd numerical method (finite volume method in the present 
study). It can be written as 

v= K - I * F ,  (29) 
where Vis the unknown vector, K is a n x n coefficient matrix, and F is the right-hand-side vector. 
In our two-phase flow problem, the vector V takes successively the values of the velocity, 
concentration and eddy viscosity. Here 

K =  K , + A K ,  (30) 

where K O  is the mean part of K ,  and A K  is the fluctuation part which contains the stochastic 
variables. K ~ can be expanded as follows: 

K - ' = ( K o + A K ) - ' ,  

= K , ' - ( K , ' ) 2 A K + ( K c 1 ) 3  AK2- .  . . , 
= ( f - P + P Z - P 3 +  . . .) K ; ' ,  

where P =  K; '  A K .  Substituting equation (31)  into (29) 

v= K - 1 * F ,  

= ( I - P + P Z - P 3 + .  , .) K,' .F,  

=vo-v,+v,-v,+. . . ,  



FIELD SOLUTIONS IN TWO-PHASE FLOW 73 

where 

This series of solution is equivalent to thc following recursive equation: 

K o * V , = A K . V , - ,  ( i = l , 2 , .  . .). (33) 

Accordingly, the matrix K O  has to be inverted only once in order to compute V. As an 
alternative, the solution for equation (33) can be obtained by initially decomposing the matrix K O :  

K o = L * U ,  (34) 
where L and U are lower and upper triangular matrices, respectively. Then, the following 
equations with respect to the unknowns Q and V ,  are solved 

L - Q = F  and U-V,=Q.  (35 )  
The vectors Q and Vo can be solved efficiently because of the matrices L and U are triangular. 
This algorithm (35) is used here to obtain K recursively. 

The expansion series (32) may be terminated after a few terms if convergence of the series is 
confirmed by using the following criteria: 

(36) 

where d,,, is the specified error limit and 1 1  VII is the normal length of vector V 

I IV~I=( I /T*V)*  s. (37) 

By solving (33) with (32), the vector V can be calculated. One notes that the stochastic field 
affects only AK, while K O  is unchanged. The recalculation of equation (33) does not involve any 
matrix inversion or matrix factorization and, therefore, can be performed very efficiently. By 
repeating this procedure M times, the Monte Carlo simulation can then be proceeded. 

I M  

where V,  denotes the j th  solution of equation (32). The outstanding feature of this approach of 
Monte Carlo simulation is that the matrix inversion or factorization is performed only once for 
all M solutions of unknown vector V. In our example for solid-liquid mixture flow computation 
in pipes, the vector V has three unknowns at a node: eddy viscosity, concentration and velocity. 

The convergence critcria for the Neumann expansion series [equation (31)] is that the absolute 
values of all eigenvalues of P = K ; ' . A K  are less than one. These criteria can be easily met no 
matter how large each component of the fluctuation matrix AK is in comparison with the 
corresponding component of I(. 

NUMERICAL EXPERIMENTS 

The proposed computational method is illustrated for single fluid and liquid-solid-particle 
mixture pipe flow. The pipe radius is 2.57 cm, and the solid particles consist of sand grains of 
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0.1 7 mm diameter. The computational mesh in the pipe cross-section is symmetrical with respect 
to the vertical mid-plane [Figure 2(a)]. There are 14 radial sectors, and 10 circumferential rows in 
the computational domain. 

Determinution of the autoregressitv parameter 

As defined in equation (15a), the autoregressive parameter r expresses the degree of spatial 
dependence of the random process on its neighbouring points. The higher the value of E, the 
greater is the dependence. The value of E is a function of the integral scale of the stochastic field 
q and mesh spacing. Figure 3 shows the variation of the integral scale, normalized by the mesh 
spacing, as a function of c( in the radial and circumferential directions, at 0.1 28r.  As long as the 
integral scale is known, thc corresponding IY can be easily determined. 

The integral scale has a definition and meaning similar to the mixing length scale in turbulence. 
By using an empirical expression of the mixing length for a circular pipe,4 we have obtained the 
average of E over the pipe cross-section (~$0.5) .  

SingleTfluid pipe ,flow 

A preliminary test was run for water flow in a circular pipe, where the random input was 
applied to the turbulent eddy viscosity. Two different stochastic models were employed: the 
one-dimensional autoregressive model and two-dimensional autoregressive model. The turbulent 
eddy viscosity can be written as 

where It, represents the mean value. E represents the stochastic part of vt ,  and can be obtained by 
the stochastic models for Z’previously discussed in this paper. The input distribution of random 
number for the stochastic model is normal, with a mean of zero and a standard deviation of oc. 

In the case of using the one-dimensional stochastic model with vclocity fluctuations only in the 
radial direction, the velocity in circumferential direction has no stochastic fluctuation. The 

I I I 
0.0 0.2 0.4 0.6 0.8 I .o 
Autoregressive Parameter, a 

Figure 3. Variation of the integral scale as a function of the autoregressive parameter a 
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3 -  

2 -  

I -  

Q , -  

velocity gradient at the wall decreases as the standard deviation of stochastic process increases, 
which implies the increase of the flow resistance. The velocity deviates from the deterministic 
value as a function of (T, of the stochastic process. With the increase of uE, the velocity distribution 
tends to become flatter. 

Figure 4 shows the computational results along the radius, at O =  12.9" from the horizontal 
co-ordinate, by using it two-dimensional stochastic model for v,. In this case, the stochastic 
process is imposed on both r and 0 directions. The fluid velocity is allowed to fluctuate in both 
directions. The deviations from the deterministic values show the importance of the probabilistic 
approach in the prediction of the mean velocity. The deviations increase with the increase of (T,, 

and they are more significant than in the one-dimensional stochastic process. The solid line in 
Figurc 4 corresponds to the deterministic solution (oz = 0), for which the empirical coefficients in 
the model are fitted to the experimental data. Nevertheless, the probabilistic solution reflects 
more realistically the intrinsic physics of the flow, and includes a supplementary parameter 
(u2 > 0)  defining the flow characteristics. The probabilistic solution may better approximate the 
experiments for a larger variety of flow conditions after the adjustment of the empirical coeffic- 
ients as in the deterministic solution. 

Figure 5 shows the standard deviation of the computed velocity versus the input standard 
deviation for kinematic eddy viscosity, at one point (at 0.7427 and O =  12.9':). With the two- 
dimensional stochastic model, the computed veiocity is less sensitive to the input standard 
deviation than in the case of the one-dimensional process. 

With the normal distribution for c (which is the input parameter for the stochastic process), the 
computed velocity has also a quasi-normal distribution. The probability of not rejecting the null 
hypothesis of normal distribution of computed velocity increases as the number of Monte Carlo 
simulation increases. Figure 6 shows the input normal distribution function for I: at 0.7427 and 
0 = 12.9". 

- = 0.247 -- 

- 

I I 

n 
rA 

Ei 
W 

3 r  

2 -  

I -  

Q , -  

- = 0.247 -- 

- 

I I 

Radius, r (m) 
Figure 4. Single-fluid velocity prediction in the radial direction for different u, by using the two-dimensional autoregres- 

sive model 
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n 
rn 
1 
E! 
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* 
b 

1-0 Autoregressive model  
0.06 r ---- 2-0 Autoregressive model 

- 

0.04 

0.02 

0 0.5 1.0 

Figure 5. Correlation between thc standard deviation of the computed mixture velocity (av) and standard deviation of 
the turbulent cddy viscosity (a,) at a point in single-fluid flow 

h I 

fi 

2 0  
-2 I 0 I 2 

Input  Random Parameter, E 

Figure 6. The density distribution function of the input random distribution for turbulent viscosity 

Solid-liquid two-phase ,flow 

The mixture consists of water at 20°C and 0.17 mm sand at an average concentration in situ of 
25% by volume. The mean velocity over the pipe cross-section is 1.66 m s- ' .  The corresponding 
mean value of the kinematic viscosity for water flow is 0.18 x m ' ~ - ~ .  Tests with a similar 
slurry have been prese'nted in the previous l4 
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A two-dimensional stochastic model with the turbulent viscosity as random input data was 
applied in simulations. Figure 7 shows the standard deviation d y  of computed velocity as 
a function of the input standard deviation of the input eddy viscosity crE at 0.742r and 8= 12.9". 
The two-dimensional stochastic model produced stable solutions. Another set of random input 
parameters could be relatcd to thc solid concentration fluctuations. 

The computed velocity contours by the probabilistic method with oF = 0.025 is compared to the 
deterministic solution in Figure 8. No coefficient of the two-phase flow model was adjusted as 
compared to the deterministic model. The differences are due only to the change of the standard 
deviation of v, fluctuations, from oE=O to a,=0.025 m2 s-'. The Neumann expansion method 
converged with no more than 5 terms, with the accuracy of 0.5% between two successive 

0.06 - rn 2 0.04 
v 

a- 
b 

0.02 

0 

c 

- I - D  Autoregressive model  
--- 2-D Autoregressive model  

- 

0.5 1.0 

Figure 7. Correlation between the standard deviation of the computed mixture velocity (av) and standard deviation of 
the turbulent eddy viscosity (aE) at a point in solid-liquid mixture flow 

2 = 0.025 m / s  
E 

Pro bobi I is ti c 
Solution 

+ - I--' ' A -  

= o  5 
Determinist ic  
Solution 

Figure 8. The velocity contours obtained by the probabilistic method for circular-pipe two-phase flow in comparison 
with the deterministic method 
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iterations [S,,, = 0.005 in equation (36)]. The CPU computational time has increased from 39.0 s 
for the deterministic solution to 63.4 s for the probabilistic solution, i.e. there is an increase of 
62% of the CPU computational time. This, relatively small increase of the computational time, is 
due to the application of the Neumann method, where the main matrix is inversed only once, as it 
is in the deterministic approach. The probabilistic solution qualitatively agrees better with the 
experimental results because it shows a stratified flow at the pipe b ~ t t o m . ~  The deterministic 
solution overpredicts the velocity of the flow in the lower half of the pipe considerably. The 
increase of the flow resistance at  the pipe bottom is qualitatively better predicted with the 
probabilistic approach. This is the result of the non-linearity of the governing equations and of 
the spatial correlation considered for the fluctuating field. The objective of this paper was to 
describe the probabilistic field approach. Comparisons with experiments and other methods will 
be presented elsewhere. 

The present study was performed with several simplifying assumptions. The random process 
was assumed homogeneous. The coefficient CI was evaluated in average, from the mean value in 
the pipe cross-section of the turbulent mixing length. The fluctuating eddy viscosity, as well as 
other fluctuating input parameters such as solids concentrations, should be evaluated from or 
verified with experimental data. 

CONCLUDING REMARKS 

The probabilistic computational method for single- and two-phase flow described in this paper 
accounts for the stochastic character of the flow. The flow mechanisms can be more realistically 
reflected in the computational algorithm. The probabilistic governing equations were discretized 
in space using a finite volume method, and then solved by applying the Neumann expansion 
method. This method is time-efficient as compared to the dircct Monte Carlo simulation, and its 
convergence can be guaranteed even for large fluctuations of the input parameters. The 
probabilistic approach can be used to evaluate both the mean and the fluctuating quantities. 
Computational rcsults for liquid-solid particle mixture flow in a circular pipe illustrate the merit 
of the probabilistic approach. 

The probabilistic numerical approach presented here can be applied in conjunction with other 
numerical methods (finite element, finite differences, or boundary element method) to solve 
partial differential equations. The approach is recommended to flows with large fluctuations of 
the field parameters and large spatial correlations of the fluctuations, such as flows with large 
turbulence scales and flow macrostructures. The construction of the mesh generation has to be 
related to the spatial correlations between fluctuations. In order to be more effective, the length 
scale of the mesh should be smaller than the integral length scale (q)  of the fluctuating field. The 
probabilistic numerical approach is particularly useful in two-phase flow, were the phase 
concentration variations and particle-particle interactions are supplementary sources of fluctu- 
ations even in laminar flow. 
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APPENDIX I :  NOMENCLATURE 

A area 
CY, Y 
F 

covariance of the Y process (=cov[x,  Y j ] )  
right-hand-side vector in matrix equation 
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I 
i, j 
K 
n 
r 
R 
r 
U, and W ,  
1’ 
x, J’, z 
Y 
z 
Greek letters 

3 

E 

? 
A, 

t 

‘I 
P 
0 

i 
Superscripts 

identity matrix 
current nodes 
coefficient matrix 
total number of nodes 
pipe radius 
correlation function 
position vector 
liquid and solid velocity, respectively 
unknown vector in matrix equation 
Cartesian co-ordinates 
stochastic field 
random number vector 

autoregressive parameter 
random number of Gaussian distribution 
two-dimensional variance function 
eigenvalue matrix, defined in equation (13) 
kinematic turbulent eddy viscosity 
integral scale of the fluctuating field 
density 
standard deviation at a point 
flow property 

CUT 
c mean value of i 
CYl  
Subscripts 

i 
i, j interface (i, j )  
x, z 

transpose of matrix [ Y ]  

inversion of matrix [ Y ]  

- 

i direction or i th  node 

co-ordinates defined in Figure 2(a) 

APPENDIX IT: DETERMINISTIC FINITE VOLUME METHOD 

The system of governing differential equations for either velocity, concentration or eddy viscosity, 
is discretized by using a finite volume method (FVM). The resulted system of algebraic equations 
is solved for a deterministic (unic) set of coefficients. 

In order to describe the FVM method adopted here, we consider a general transport equation 
for any scalar quantity $ 

v -(I) u)-v*(&$ v $)- S, =o, (41) 
where U is velocity vector transporting I) by convection, E, i s  eddy diffusivity of I), and S, is 
source term. 

The transport equation i s  then integrated over a finite volume ci 

J,L V .  ($ U) dai - I;. v .(E+ v $) dci- [,, S, =o,  
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using Gauss's theorem, for any quantity 

V - f  dz;= n - f d A ,  J: I, 1, f dv = jA fk,h dA. 

The equation (42) is transformed into 

n * ( $ U )  dA - n*(s# V$) dA- k,,S,d dA=O, (43) IAl s,; L, 
where A ,  is the control surface for ith control finite volume ci, n is outward unit normal, d is the 
distance from the node i to thc control surface, and ksh is the coefficient related to the typical 
shape of the finite volume. 

The surface integral equation (43) can be approximated to an algebraic equation 

whcre Ai , , j  is the area of the interface ( i , j ) ,  ni , j  is the unit normal on the interface (i, j ) ,  ( . ) i , j  is the 
quantity (.) on the interfacc (i,,j), and di , , j  is the distance from the node i to the interface (i,j). 

Any quantity on interface (i, j )  can be interpolated between the values at each node on either 
side of that interface (Figure 2). The interpolation can be performed algebraically with a linear 
expression 

iid,j + $jdi *. .= 
di+dj ' (45) 

or analytically if the upwind effect is important (i.e. Uini, j d i / ( j  or/and Ujni, j d J / &  are larger than 
unity). In this last situation, the velocities and diffusion coefficients at nodes i and j are included in 
the interpolation function. 

Equation (44) is written for each finite volume in the flow domain. In our simulation of 
uniform-pipe flow, each finite volume has a base defined by the mesh generation in the pipe 
cross-section [Figure 2(a)], and a height along the pipe axis equal to unity. By using interpolation 
formulas of type (43, all the interfacial values are expressed as a function of the node values. 
There are total n algebraic equations for the flow domain which is divided into n finite volumes. 
This system of n algebraic equations can be written as a matrix equation 

K V = F ,  (46 ) 

where K is a n x n coefficient matrix, Vis the unknown vector V= +kz, . . . , $JT, and F is the 
right-hand-side vector. 

Equation (46) is then solved for the unknown vector V by a Gaussian elimination or iteration 
scheme. I f  experimental data are available as reference, the vector V has to be compared to the 
mean value of the corresponding instantaneous measurements. 
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